দুটি বিন্দু আধানের মধ্যবর্তী আকর্ষণ বা বিকর্ষণ বল সম্পর্কে বিজ্ঞানী কুলম্ব একটি সূত্র বিবৃত করেন। একে কুলম্বের সূত্র বলে।
ধরা যাক, A ও B বিন্দুতে অবস্থিত দুটি আধানের পরিমাণ যথাক্রমে q1 ও q2 এবং এদের মধ্যবর্তী দূরত্ব d [চিত্র ২.১] ।
এদের মধ্যে ক্রিয়াশীল আকর্ষণ বা বিকর্ষণ বলকে স্থির তড়িৎ বল বা কুলম্ব বল বলে এবং এ বলের মান F হলে, কুলম্বের সূত্রানুসারে,
F∝q1q2d2
F=Cq1q2d2
এখানে C একটি সমানুপাতিক ধ্রুবক যার মান রাশিগুলোর একক এবং বিন্দু আধানদ্বয়ের মধ্যবর্তী মাধ্যমের প্রকৃতির উপর নির্ভর করে। এ ধ্রুবককে অনেক সময় কুলম্ব ধ্রুবক বলা হয় ।
এককের আন্তর্জাতিক পদ্ধতি অর্থাৎ System International (SI) অনুযায়ী তড়িৎ প্রবাহের একক অ্যাম্পিয়ার (A)-কে মৌলিক একক হিসেবে নির্ধারণ করা হয়েছে। আধানের এস. আই একক হচ্ছে কুলম্ব (C)। অ্যাম্পিয়ার থেকে কুলম্বের সংজ্ঞা দেয়া হয়।
কোনো পরিবাহীর মধ্য দিয়ে এক অ্যাম্পিয়ার (1A) প্রবাহ এক সেকেন্ড (1s) চললে এর যে কোনো প্রস্থচ্ছেদ দিয়ে যে পরিমাণ আধান প্রবাহিত হয় তাকে এক কুলম্ব (1C) বলে।
:- 1C = 1A x 1s
সুতরাং 40 কুলম্ব আধান বলতে আমরা বুঝি কোনো পরিবাহীর মধ্য দিয়ে এক অ্যাম্পিয়ার প্রবাহ 40 সেকেন্ড চললে এর যে কোনো প্রস্থচ্ছেদ দিয়ে যে পরিমাণ আধান প্রবাহিত হয় তা।
corner এস. আই এককে বলকে নিউটন (N), দূরত্বকে মিটার (m) এবং আধানকে কুলম্ব (C)-এ পরিমাপ করলে কুলম্বের সূত্র (2.1) এর সমানুপাতিক ধ্রুবক C এর মান শূন্যস্থান (vacuum) এর জন্য পাওয়া যায়,
C= 9 x 109 Nm² C-2
এস. আই পদ্ধতিতে এই সমানুপাতিক ধ্রুবককে লেখা হয়,
C =14πεo
এই ধ্রুবককে দেখতে আপাতদৃষ্টিতে জটিল মনে হলেও একে এরূপে প্রকাশ করা হয় কারণ তাহলে তড়িৎ চুম্বক বিজ্ঞানের অন্যান্য গুরুত্বপূর্ণ সূত্র ও সমীকরণগুলোর রূপ সরল হয়।
:. C =14πεo =9 x 109 Nm2C-2 (2.1)
এখানে ∈o হচ্ছে একটি ধ্রুব সংখ্যা যাকে শূন্যস্থানের ভেদনযোগ্যতা (permittivity of free space) বলে। এর পরিমাপকৃত মান হলো,
∈o = 8.854 × 10-12 C2 N-1 m-1 (2.2)
সুতরাং শূন্যস্থানের জন্য কুলম্বের সূত্রের (সমীকরণ 2.1) রূপ হলো,
F=14π∈o q1q2d2
আমরা ইতোমধ্যে জেনেছি একটি আহিত বস্তুর চারপাশে যে অঞ্চল জুড়ে তার তড়িৎ প্রভাব বিদ্যমান থাকে তাকে তড়িৎ ক্ষেত্র বলে। স্বাভাবিকভাবেই তড়িৎ ক্ষেত্রের সকল বিন্দুতে এর প্রভাব সমান থাকে না। বিভিন্ন বিন্দুতে এর প্রভাব বিভিন্ন হয়। বিন্দুটি আহিত বস্তুর যত নিকটে হবে তার প্রভাবও তত বেশি হবে। এই প্রভাব বোঝার জন্য তড়িৎ ক্ষেত্রের কোনো বিন্দুতে একটি পরীক্ষণীয় আধান আনতে হয়। সেই পরীক্ষণীয় আধানের ওপর প্রযুক্ত বল দ্বারা এই তড়িৎ প্রভাব পরিমাপ করা হয়। এই পরীক্ষণীয় আধানটি হচ্ছে একক ধনাত্মক আধান অর্থাৎ এক কুলম্ব মানের একটি ধনাত্মক আধান। তড়িৎক্ষেত্রের এই প্রভাব বা সবলতাকে একটি রাশি দ্বারা বর্ণনা করা হয়। এই রাশিটিকে তড়িৎক্ষেত্রের প্রাবল্য বা তীব্রতা বা সবলতা (Electric Field intensity or Electric Field Strength) বলে। একে E দিয়ে প্রকাশ করা হয় । আজকাল অবশ্য শুধু তড়িৎক্ষেত্র বললেই তড়িৎক্ষেত্রের প্রাবল্য বা তীব্রতা বা সবলতাকেই বোঝানো হয় এবং তড়িৎক্ষেত্রকেই →E দ্বারা নির্দেশ করা হয়। বলা হয় কোনো তড়িৎগ্রস্ত বস্তুর চারপাশে প্রত্যেক বিন্দুতে তড়িৎক্ষেত্র →E আছে। তড়িৎক্ষেত্র →E এর মান বলতে তড়িৎ প্রাবল্যের মানকে বোঝানো হয়। তড়িৎক্ষেত্রের দিক বলতেই তড়িৎক্ষেত্রের প্রাবল্যের দিক বোঝায়। তড়িৎক্ষেত্রের কোনো বিন্দুতে একটি একক ধনাত্মক আধান স্থাপন করলে সেটি যে বল অনুভব করে তাকে ঐ বিন্দুর তড়িৎ প্রাবল্য বলে।
মান : তড়িৎক্ষেত্রের কোনো বিন্দুতে স্থাপিত + আধান যদি F বল অনুভব করে তাহলে ঐ বিন্দুতে তড়িৎ প্রাবল্যের মান হবে,
E=Fq.. (2.7)
দিক : যেহেতু তড়িৎ প্রাবল্য হলো একক ধনাত্মক আধানের ওপর ক্রিয়াশীল বল, সুতরাং প্রাবল্যের দিক আছে এবং এটি একটি ভেক্টর রাশি। একক ধনাত্মক আধান যে দিকে বল অনুভব করে তড়িৎ প্রাবল্যের দিক হয় সে দিকে। সুতরাং (2.7) সমীকরণকে ভেক্টররূপে লেখা যায়,
→E=→Fq
২.২ চিত্রে A ধনাত্মক আধানে আহিত বন্ধু হওয়ায় P বিন্দুতে স্থাপিত +q ধনাত্মক আধানটি PB বরাবর বিকর্ষণ বল অনুভব করবে। সুতরাং P বিন্দুতে তড়িৎ প্রাবল্যের দিক হবে PB বরাবর। কিন্তু A বন্ধুটি যদি ঋণাত্মক আধানে আহিত হয়, তাহলে P বিন্দুতে স্থাপিত ধনাত্মক আধানটি PA বরাবর আকর্ষণ বল অনুভব করবে, ফলে প্রাবল্যের দিক হবে PA বরাবর।
একক : (2.8) সমীকরণ থেকে দেখা যায়, বলের একককে আধানের একক দিয়ে ভাগ করলে তড়িৎ প্রাবল্যের একক পাওয়া যায়। এই একক হচ্ছে নিউটন/ কুলম্ব (NC-1)।
কোনো বিন্দুর তড়িৎ প্রাবল্য 50 NC-1 বলতে বোঝায় ঐ বিন্দুতে স্থাপিত 1C কুলম্ব আধান 50 N বল অনুভব করে।
(2.8) সমীকরণ থেকে দেখা যায়, তড়িৎক্ষেত্রের কোনো বিন্দুতে স্থাপিত কোনো আধানের ওপর ক্রিয়াশীল বল,
→F=q→E
বা, F = qE
অর্থাৎ তড়িৎক্ষেত্রের কোনো বিন্দুতে স্থাপিত কোনো আধানের ওপর ক্রিয়াশীল বল ঐ বিন্দুতে প্রাবল্য এবং স্থাপিত আধানের গুণফলের সমান। ধনাত্মক আধান প্রাবল্যের অভিমুখে বল লাভ করে আর ঋণাত্মক আধান প্রাবল্যের বিপরীত দিকে বল লাভ করে।
ধরা যাক, K তড়িৎ মাধ্যমাঙ্কবিশিষ্ট কোনো মাধ্যমে A বিন্দুতে একটি ধনাত্মক আধান + q অবস্থিত। এই আধান থেকে r দূরত্বে P বিন্দুতে তড়িৎ প্রাবল্য নির্ণয় করতে হবে।
ধরি, P বিন্দুতে একটি ক্ষুদ্র আধান + qo স্থাপন করা হলো [চিত্র ২.৩]। এখন q আধানের ওপর ক্রিয়াশীল বল,
F= 14π∈okqqor2.. (2.10)
কিন্তু তড়িৎ প্রাবল্য হচ্ছে একটি একক ধনাত্মক আধানের ওপর বল।
সুতরাং P বিন্দুর তড়িৎ প্রাবল্য,
E=Fqo… (2.11)
(2.10) সমীকরণ থেকে F এর মান বসিয়ে আমরা পাই,
E=14π∈οKqqor2qoE=14π∈οKqr2
+q আধানটি শূন্যস্থান বা বায়ু মাধ্যমে স্থাপিত হলে তড়িৎ মাধ্যমাঙ্ক K এর মান 1 ধরা হয়। সে ক্ষেত্রে, তড়িৎ প্রাবল্য হবে,
E=14π∈οqr2
দিক : E একটি ভেক্টর রাশি। এর দিক হবে A ও P বিন্দুর সংযোজক সরলরেখা বরাবর। q ধনাত্মক হলে বহির্মুখী অর্থাৎ PB বরাবর আর q ঋণাত্মক হলে অন্তর্মুখী অর্থাৎ PA বরাবর।
একটি আহিত বস্তুর চার পাশে তার প্রভাব অঞ্চলের তথা তড়িৎ ক্ষেত্রের প্রত্যেক বিন্দুর যেমন প্রাবল্য থাকে, তেমনি প্রত্যেক বিন্দুর বিভবও থাকে। তড়িৎ প্রাবল্য থেকে আমরা জানতে পারি, কোনো বিন্দুতে একটি আধান স্থাপন করলে সেটি কোন দিকে কত বল লাভ করবে। তড়িৎ বিভব থেকে আমরা জানতে পারবো তড়িৎ ক্ষেত্রে একটি মুক্ত আধান কোন দিকে চলবে, ক্ষেত্র সৃষ্টিকারী আধানটির দিকে নাকি ক্ষেত্র সৃষ্টিকারী আধানটি থেকে দূরে সরে যাবে।
কোনো আহিত বস্তুর তড়িৎক্ষেত্রের মধ্যে একটি আধানকে এক বিন্দু থেকে অন্য বিন্দুতে স্থানাস্তর করা হলে কিছু কাজ সম্পন্ন হয়। ক্ষেত্র সৃষ্টিকারী আধানটি ধনাত্মক হলে একটি ধনাত্মক আধানকে বস্তুর দিকে আনতে বিকর্ষণ বলের বিরুদ্ধে কাজ করতে হয়। সুতরাং অসীম থেকে একটি একক ধনাত্মক আধানকে বস্তুর যত নিকটবর্তী কোনো বিন্দুতে আনতে হবে তত বেশি কাজ করতে হবে। সুতরাং ধনাত্মকভাবে আহিত একটি বস্তুর তড়িৎক্ষেত্রের মধ্যে একটি বিন্দু আধানকে বস্তুটির যত নিকটে আনতে হবে তার বিভবও তত বেশি হবে। ক্ষেত্র সৃষ্টিকারী আহিত বস্তুটি ঋণাত্মকভাবে আহিত হলে একটি একক ধনাত্মক আধানকে ঐ বস্তুর দিকে আনতে আকর্ষণ বল দ্বারা কাজ সম্পন্ন হবে।
অসীম থেকে প্রতি একক ধনাত্মক আধানকে তড়িৎক্ষেত্রের কোনো বিন্দুতে আনতে সম্পন্ন কাজের পরিমাণকে ঐ বিন্দুর তড়িৎ বিভব বলে।
মান : অসীম থেকে ক্ষুদ্র আধান g কে তড়িৎক্ষেত্রের কোনো বিন্দুতে আনতে যদি সম্পন্ন কাজের পরিমাণ W হয়,তবে ঐ বিন্দুর বিভব V হবে,
V=Wq
যেহেতু বিভব হচ্ছে নির্দিষ্ট পরিমাণের কাজ, কাজেই এর কোনো দিক নেই । সুতরাং বিভব একটি স্কেলার রাশি। ধনাত্মকভাবে আহিত বস্তুর তড়িৎক্ষেত্রে স্থাপিত একটি ধনাত্মক আধান যদি মুক্তভাবে চলতে পারে, তবে সেটি ধনাত্মকভাবে আহিত বস্তু থেকে দূরে সরে যাবে। সুতরাং বলা চলে ধনাত্মক আধান উচ্চ বিভব থেকে নিম্ন বিভবের দিকে চলে। অপরপক্ষে ঋণাত্মক আধান ধনাত্মকভাবে আহিত বস্তুর দিকে চলে। সুতরাং ঋণাত্মক আধান নিম্ন বিভব থেকে উচ্চ বিভবের দিকে চলে । ঋণাত্মকভাবে আহিত বস্তুর তড়িৎক্ষেত্রে অসীম থেকে ধনাত্মক আধান বস্তুর দিকে আসতে নিজেই কাজ করে। ফলে আধানটি শক্তি হারায় এবং তড়িৎক্ষেত্রের কোনো বিন্দুর বিভবকে ঋণাত্মক ধরা হয়।
একক: (2.14 ) সমীকরণ থেকে দেখা যায় কাজের একককে আধানের একক দিয়ে ভাগ করে বিভবের একক পাওয়া যায়। এস. আইতে বিভবের একক ভোল্ট (V)।
আধান 9 = 1 কুলম্ব (C) হলে যদি কাজ W= 1 জুল (J) হয় তাহলে বিভব V = 1 ভোল্ট (V) হয়।
:- 1V=1 J1 C=1 J C-1
তড়িৎক্ষেত্রের কোনো বিন্দুর বিভব 25 V বলতে বোঝায় অসীম থেকে প্রতি কুলম্ব ধনাত্মক আধানকে তড়িৎক্ষেত্রের ঐ বিন্দুতে আনতে 25J কাজ সম্পন্ন হয়।
ধরা যাক, কোনো তড়িৎক্ষেত্রের মধ্যে d দূরত্বে অবস্থিত A ও B দুটি বিন্দু এবং ঐ দুই বিন্দুর বিভব যথাক্রমে VAও VB [চিত্র ২.৪ ] ।
অতএব সংজ্ঞানুসারে, অসীম থেকে প্রতি একক ধনাত্মক আধানকে A বিন্দুতে আনতে কাজের পরিমাণ VA এবং B বিন্দুতে আনতে কাজের পরিমাণ VB । অতএব প্রতি একক ধনাত্মক আধানকে B বিন্দু থেকে A বিন্দুতে আনতে কাজের পরিমাণ VA - VB অর্থাৎ ঐ দুই বিন্দুর বিভব পার্থক্য।
কোনো তড়িৎক্ষেত্রের মধ্যে A ও B দুটি বিন্দুর বিভব যথাক্রমে VA ও VB হলে [চিত্র ২.৪]
B বিন্দু থেকে A বিন্দুতে প্রতি একক ধনাত্মক আধান সরাতে কৃতকাজ = VA - VB
q একক ধনাত্মক আধানকে B বিন্দু থেকে A বিন্দুতে সরাতে কৃতকাজ,
W= q (VA - VB)…. (2.15 ক)
আবার, q একক আধানকে A বিন্দু থেকে B বিন্দুতে সরাতে কৃতকাজ,
W= qw (VA - VB)... (2.15 খ)
:-কাজ = আধান × বিভব পার্থক্য
(2.15) সমীকরণে q, VA ও VB-এর মান বসালে যদি W ধনাত্মক হয় তবে বুঝতে হবে বাহ্যিক বল দ্বারা কাজ করতে হবে আর যদি W-এর মান ঋণাত্মক হয় তবে বুঝতে হবে তড়িৎক্ষেত্রই কাজ করবে।
পানি (H2O), ক্লোরোফরম (CHCI3) এবং অ্যামোনিয়া (NH3) অণু হচ্ছে স্থায়ী তড়িৎ দ্বিমেরুর কয়েকটি উদাহরণ। এসব অণুতে ধনাত্মক ও ঋণাত্মক আধান বণ্টনের কেন্দ্র কখনো সমপাতিত হয় না। ২.৭ চিত্রে একটি তড়িৎ দ্বিমেরু দেখানো হচ্ছে। এতে দুটি সমান ও বিপরীত বিন্দু আধান '-' এবং '+q' এর মধ্যবর্তী দূরত্ব 2l । কোনো তড়িৎ দ্বিমেরুর ধনাত্মক ও ঋণাত্মক আধানের মধ্য দিয়ে অতিক্রমকারী সরলরেখাকে ঐ তড়িৎ দ্বিমেরুর অক্ষ বলে। একটি তড়িৎ দ্বিমেরুর সবলতা পরিমাপ করা হয় তার তড়িৎ দ্বিমেরু ভ্রামক (electric dipole moment) দ্বারা। তড়িৎ দ্বিমেরু ভ্রামক একটি ভেক্টর রাশি এবং একে →p দ্বারা প্রকাশ করা হয়। যে কোনো একটি আধান এবং এদের মধ্যবর্তী দূরত্বের গুণফল দ্বারা এর মান পরিমাপ করা হয়। সুতরাং
:- p = q × 2l
→p এর দিক হয় তড়িৎ দ্বিমেরুর অক্ষ বরাবর ঋণাত্মক আধান থেকে ধনাত্মক আধানের দিকে। এর একক হচ্ছে কুলম্ব মিটার। (Cm)।
কোনো তড়িৎ দ্বিমেরুর ধনাত্মক ও ঋণাত্মক আধানের মধ্য দিয়ে অতিক্রমকারী সরলরেখাকে ঐ জড়িৎ দ্বিমেরুর অক্ষ বলে।
ধরা যাক, 2l দূরত্বে অবস্থিত - q ও + q দুটি বিন্দু আধানের সমন্বয়ে একটি তড়িৎ দ্বিমেরু পঠিত (চিত্র: ২.৮)। মনে করি ও + q আধান দুটি K তড়িৎ মাধ্যমাঙ্ক বিশিষ্ট মাধ্যমে যথাক্রমে A ও B বিন্দুতে অবস্থিত । এই তড়িৎ দ্বিমেরুর মধ্যবিন্দু O থেকে তার অক্ষের ওপর r দূরত্বে অবস্থিত P বিন্দুতে তড়িৎ প্রাবল্য নির্ণয় করতে হবে।
এখন A বিন্দুর - q আধানের জন্য P বিন্দুতে প্রাবল্য,
E1=14π∈oK−q(r+l)2E1=14π∈oKq(r+l)2
আবার, B বিন্দুর q আধানের জন্য P বিন্দুতে প্রাবল্য,
E2=14π∈oKq(r+l)2
যেহেতু E1 এবং E2 একই সরলরেখা বরাবর বিপরীত দিকে ক্রিয়া করে এবং E2 > E1 সুতরাং P বিন্দুতে লব্ধি প্রাবল্য E হবে,
E = E2 - E1 এর দিক হবে E2 এর দিকে তথা PD বরাবর
E=14π∈oKq(r+l)2−14π∈oKq(r+l)2=q4π∈oK [1(r+l)2−1(r+l)2]=q4π∈oK [(r+l)2−(r−l)2(r2+l2)2]=q4π∈oK× 4rl(r2−l2)2
:- E=14π∈oK2pr(r2−l2)2
এই প্রাবল্যের দিক থিমের অক্ষ বরাবর ঋণাত্মক আধান থেকে ধনাত্মক আধানের দিকে।
বিশেষ ক্ষেত্র : যদি P বিন্দুটি দ্বিমেরু থেকে অনেক দূরে হয় (অর্থাৎ যদি r >> l হয়), তাহলে r2 এর তুলনায় l2 কে উপেক্ষা করা যায়। সেক্ষেত্রে
E=14π∈oK2pr3
যে বিন্দুর প্রাবল্য নির্ণয় করতে হবে, সে বিন্দুটি যদি মধ্য বিন্দুর বাম দিকেও অবস্থিত হয়, তাহলেও তড়িৎ প্রাবল্যের দিক হবে বিষের অক্ষ বরাবর কণাত্মক আধান থেকে ধনাত্মক আধানের দিকে। একটি তড়িৎ ছিমেরুর জন্য তার অক্ষের ওপর কোনো বিন্দুতে তড়িৎ বিভবের রাশিমালা কোনো তড়িৎ দ্বিমেরুর ধনাত্মক ও ঋণাত্মক আধানের মধ্য দিয়ে অতিক্রমকারী সরলরেখাকে ঐ তড়িৎ দ্বিমেরুর অক্ষ বলে।
ধরা যাক, 2l দূরত্বে অবস্থিত - q ও + q দুটি বিশ্ব আধানের সমন্বয়ে একটি তড়িৎ দ্বিমেরু গঠিত (চিত্র ২.৯)। মনে করি – q + q আধান দুটি K তড়িৎ মাধ্যমাক্ষবিশিষ্ট মাধ্যমে যথাক্রমে A ও B বিন্দুতে অবস্থিত এ তড়িৎ দ্বিমেরুর মধ্যবিন্দু থেকে তার অক্ষের ওপর r দূরত্বে অবস্থিত P বিন্দুতে তড়িৎ বিভব নির্ণয় করতে হবে।
এখন A বিন্দুর - q আধানের জন্য P বিন্দুতে বিভব,
V1=−14π∈οKq(r+l)
আবার, B বিন্দুর q আধানের জন্য P বিন্দুতে বিভব,
V2=−14π∈οKq(r−l)
এখন P বিন্দুর বিভব হলে,
V = V1 + V2
বিশেষ ক্ষেত্র : যদি P বিন্দুটি দ্বিষের থেকে অনেক দূরে হয় (অর্থাৎ যদি r >>] হয়), তাহলে r2 এর তুলনায় P কে উপেক্ষা করা যায়। সেক্ষেত্রে
V=14π∈οKqr2
শূন্যস্থান (বা বায়ু) হলে K = 1, সুতরাং
V=14π∈οqr2
ধরা যাক, A বিন্দুতে + q এবং B বিন্দুতে - 9 দুটি বিন্দু চার্জ শূন্যস্থানে পরস্পর থেকে 21 দূরত্বে থেকে একটি তড়িৎ দ্বিমেরু গঠন করেছে (চিত্র ২.১০)। দ্বিমেরুটির লম্ব সমদ্বিখণ্ডকের উপর P একটি বিন্দু। দ্বিমেরুর মধ্যবিন্দু O থেকে P বিন্দুটি দূরত্বে অবস্থিত। P বিন্দুতে তড়িৎ প্রাবল্য নির্ণয় করতে হবে। A বিন্দুতে +q চার্জের জন্য P বিন্দুতে প্রাবল্য,
EA=14π∈oKq(r2+l2) বিকর্ষণ বল ।
EA এর দিক হবে PS বরাবর। B বিন্দুতে –q চার্জের জন্য P বিন্দুতে প্রাবল্য,
EB=14π∈oq(r2+l2) আকর্ষণ বল
EB -এর দিক হবে PT বরাবর।
ধরা যাক,
:-
সুতরাং ভেক্টরের সামান্তরিকের সূত্রানুসারে P বিন্দুতে লব্ধি প্রাবল্য,
কোনো উৎস যেমন জড়িৎকোষ থেকে ধারকে শক্তি সঞ্চয় করে পুনরায় তা ব্যবহার করা হয় । যে কোনো আকৃতির দুটি পরিবাহীর মধ্যবর্তী স্থানে কোনো অন্তরক পদার্থ যেমন- বায়ু, কাচ, প্লাস্টিক ইত্যাদি স্থাপন করে ধারক তৈরি করা হয়। পরিবাহী দুটিকে ধারকের পাত এবং অন্তরক পদার্থকে ডাইইলেকট্রিক বলে।
সমান্তরাল পাত ধারক, গোলীয় ধারক, লিডেন জ্যার প্রভৃতি ধারক সচরাচর ব্যবহৃত হয়।
যখন কোনো শক্তি উৎস যেমন তড়িৎকোষ কোনো ধারকের পাতে তড়িতাধান প্রেরণ করে, তখন ধারক শক্তি সঞ্চয় করে। একটি ধারককে কোনো তড়িৎকোষের সাথে ২.১৩ চিত্রানুযায়ী সংযুক্ত করলে কোষের ঋণাত্মক প্রান্তে সংযুক্ত ধারকের A পাতে কোষ থেকে ইলেকট্রন এসে জমা হয় এবং ধারকের B পাত থেকে একই হারে ইলেকট্রন কোষের ধনাত্মক প্রান্তে স্থানান্তরিত হতে থাকে । A পাতে ইলেকট্রন জমা হওয়ার কারণে এটি ঋণাত্মক আধানে আহিত হয় এবং B পাত থেকে ইলেকট্রন চলে যাওয়ায় এটি ধনাত্মক আধানে আহিত হয়। লক্ষণীয় যে, ধারক আহিত করার সময় এর এক পাত থেকে অন্তরক পদার্থের মধ্যদিয়ে অন্য পাতে কোনো ইলেকট্রন প্রবাহিত হয় না। আহিত করার সময় ধারকের উভয় পাতে সমপরিমাণ বিপরীত আধানের উদ্ভব হয়। পাতদ্বয়ে আধান বৃদ্ধির ফলে এদের মধ্যবর্তী বিভব পার্থক্য বৃদ্ধি পায় এবং ধারকের এই ভোল্টেজ উৎস ভোল্টেজের বিপরীতমুখী হওয়ায় তড়িৎ প্রবাহকে বিঘ্নিত করে। ধারকের ভোল্টেজ V, উৎস ভোল্টেজ Vo, এর সমান হলে তড়িৎ প্রবাহ সম্পূর্ণ বন্ধ হয়ে যায় এবং ধারকটি সম্পূর্ণ আহিত হয়েছে বলা হয়। এ সময় ধারকটি বর্তনীতে একটা খোলা চাৰি (open key) হিসেবে প্রতীয়মান হয়। এ অবস্থার পাতদ্বয়ে আধানের পরিমাণ যথাক্রমে + Q ও - Q এবং ধারকে সঞ্চিত আধানের পরিমাণ Q । আহিত ধারকটিকে এখন শক্তির উৎস হিসেবে ব্যবহার করা যায়।
এখন কোষের সংযোগ বিচ্ছিন্ন করে ধারকের পাতদ্বয় একটি পরিবাহী তার দ্বারা সংযুক্ত করে দিলে ইলেকট্রন পুনরায় A পাত থেকে B পাতে প্রবাহিত হবে। B পাতটি সম্পূর্ণ আধান নিরপেক্ষ না হওয়া পর্যন্ত প্রবাহ অব্যাহত থাকবে। সুতরাং অল্প সময়ের জন্য হলেও ধারক থেকে তড়িৎ প্রবাহ পাওয়া যায় এবং এই সময় শেষে ধারকের পাত আধানশূন্য হয়। অর্থাৎ ধারকটি তখন ক্ষরিত (discharged) হয়। লক্ষণীয় যে, ক্ষরণকালে Q পরিমাণ আধান এক পাত থেকে অন্য পাতে প্রবাহিত হয়।
মান : ধারকের প্রত্যেক পাতে Q পরিমাণ আধান প্রদান করায় যদি পাতদ্বয়ের বিভব পার্থক্য V হয়, তাহলে ধারকের ধারকত্ব হবে,
C=QV... (2.25)
ধারকত্বের একক : কোনো ধারকের দুই পাতের বিভব পার্থক্য 1 ভোল্ট (IV) বজায় রাখতে যদি প্রত্যেক পাতে 1 কুলম্ব (1 C) আধানের প্রয়োজন হয় তাহলে সেই ধারকের ধারকত্বকে ফ্যারাড (1F) বলে ।
:- 1F =1C1 V=1CV-1
এক ফ্যারাড (1F) বেশ বড় একক বিধায় এর চেয়ে অনেক ছোট একক মাইক্রোফ্যারাড (μF) সচরাচর ব্যবহার করা হয়। ফ্যারাডের দশ লক্ষ ভাগের এক ভাগকে মাইক্রোফ্যারাড বলে। অর্থাৎ 1μF = 10-6F। এছাড়া ন্যানো ফ্যারাড (nF), পিকোফ্যারাড (pF) এককও ব্যবহার করা হয়।
1nF =10-9 F এবং 1pF = 10-12 F
কোনো ধারকের ধারকত্ব 5 F বলতে বোঝায় ধারকের দুই পাতের মধ্যে 1V বিভব পার্থক্য বজায় রাখতে প্রত্যেক পাতে 5 C আধান প্রদান করতে হয়।
কোনো বস্তুতে তাপ প্রয়োগ করলে যেমন এর তাপমাত্রা বাড়ে তেমনি কোনো পরিবাহীকে আধান প্রদান করলে এর বিভব বাড়ে। যত বেশি আধান দেয়া হয় বিভবও তত বেশি বাড়ে। তাপবিজ্ঞানে কোনো বস্তুর তাপমাত্রার একক বাড়াতে যে পরিমাণ তাপের প্রয়োজন হয় তাকে তাপ ধারকত্ব বলে। অনুরূপভাবে স্থির তড়িতে যে রাশি পাওয়া যায় তাই আধান ধারকত্ব।
ব্যাখ্যা : কোনো পরিবাহীর বিভব V পরিমাণ বাড়াতে যদি Q পরিমাণ আধানের প্রয়োজন হয়, তবে বিভব একক পরিমাণে বাড়াতে QVপরিমাণ আধানের প্রয়োজন হয়। সুতরাং আধাম ধারকত্ব,
C=Qv
ধরা যাক, ব্যাসার্ধের একটি গোলক A-কে K তড়িৎ মাধ্যমাঙ্কবিশিষ্ট কোনো মাধ্যমে স্থাপন করা হলো। এতে + q পরিমাণ আধান দিয়ে ধনাত্মকভাবে আহিত করা হলো। এর ফলে এর বিভব V হলো। অতএব, এর ধারকত্ব,
C=qv
গোলকে স্থাপিত আধান গোলক পৃষ্ঠের সর্বত্র সমভাবে ছড়িয়ে পড়বে। ফলে গোলকের পৃষ্ঠ থেকে বলরেখাসমূহ লম্বভাবে সকল দিকে নির্গত হবে [চিত্র ২.১৪ (ক)]।
এ সকল বলরেখাকে পেছন দিকে বাড়ালে এগুলো গোলকের কেন্দ্রে মিলিত হবে। আবার যদি ধরা যায়, ৭ আধান গোলকের কেন্দ্রে অবস্থিত আছে, তাহলেও বলরেখাগুলো ঠিক একই রূপ হবে [চিত্র ২.১৪ (খ)]। সুতরাং q একক আধান গোলকের পৃষ্ঠে বণ্টিত থাকলে এবং q একক আধান গোলকের কেন্দ্রে অবস্থিত থাকলে বলরেখা একই রূপ হয়। অতএব, একক আধান গোলকের পৃষ্ঠে স্থাপিত হলেও এই আধানকে গোলকের কেন্দ্রে কেন্দ্রীভূত বলে বিবেচনা করা যায়। তাই গোলকের পৃষ্ঠে বিভব তথা গোলকের বিভব,
. V=14π∈oKqr
বিভবের এই মান ধারকত্বের উপরিউক্ত সমীকরণে বসিয়ে আমরা পাই, C =4π∈oKr
গোলকটি যদি বায়ুতে বা শূন্যস্থানে অবস্থিত হয়, তাহলে
K = 1, সুতরাং C = 4π∈or
এ থেকে দেখা যায় যে, গোলকের ধারকত্ব এর ব্যাসার্ধের সমানুপাতিক।
দুটি সমান্তরাল পরিবাহক পাত দ্বারা এই ধারক তৈরি করা হয়। একই আকৃতির এবং একই ক্ষেত্রফলবিশিষ্ট দুটি পাত সমান্তরালভাবে পাশাপাশি রেখে কোনো অন্তরক মাধ্যম দ্বারা যদি বিচ্ছিন্ন করা হয় তাহলে একটি সমান্তরাল পাত ধারক তৈরি হয় [চিত্র ২.১৫]। একটি তড়িৎকোষের সাথে সংযোগ দিয়ে ধারকটিকে আহিত করা হয় ।
ধরা যাক,
A = ধারকের প্রত্যেক পাতের ক্ষেত্রফল ।
d = পাতদ্বয়ের মধ্যবর্তী দূরত্ব।
E = পাতদ্বয়ের মধ্যবর্তী মাধ্যমের ভেদনযোগ্যতা।
Q = প্রত্যেক পাতে মোট আধান।
V = পাতদ্বয়ের বিভব পার্থক্য ।
σ=QA = প্রত্যেক পাতে আধান ঘনত্ব ।
সুতরাং ধারকের ধারকত্ব C=Qv... (2.27)
ধারকের পাত দুটি খুব কাছাকাছি অবস্থিত বলে মধ্যবর্তী স্থানে বলরেখাগুলো পরস্পর সমান্তরাল হতে দেখা যায় [চিত্র ২.১৬]। সুতরাং পাত দুটির মধ্যবর্তী স্থানে তড়িৎ প্রাবল্য সর্বত্র সুষম হবে, কারণ ধনাত্মক পাতের একক ক্ষেত্রফল থেকে যত সংখ্যক বলরেখা নির্গত হবে মধ্যবর্তী স্থানের যে কোনো একক ক্ষেত্রফলের মধ্য দিয়ে তত সংখ্যক বলরেখা অতিক্রম করবে।
সুতরাং পাতদ্বয়ের পৃষ্ঠের তড়িৎ প্রাবল্য এবং পাতদ্বয়ের মধ্যবর্তী স্থানের তড়িৎ প্রাবল্য একই হবে। কিন্তু আমরা আধান ঘনত্বের সাথে প্রাবল্যের সম্পর্ক থেকে জানি, কোনো পাতের পৃষ্ঠে তড়িৎ প্রাবল্য E=σ∈। সুতরাং সমান্তরাল পাত ধারকের পাতদ্বয়ের মধ্যবর্তী স্থানে তড়িৎ প্রাবল্য হবে,
E=σ∈
বা, E=Q∈A
V=Qd∈A
(2.27) সমীকরণে এই মান বসিয়ে আমরা পাই,
C=Q∈AQd
পাতদ্বয়ের মধ্যবর্তী মাধ্যমে বায়ু হলে, ∈=∈o (শূন্যস্থানের ভেদনযোগ্যতা) ধরা যায়। সেক্ষেত্রে
:- C=∈σAd
ধারকের ধারকত্ব এর ক্ষেত্রফল A এর সমানুপাতিক, মধ্যবর্তী মাধ্যমের তড়িৎ মাধ্যমাঙ্ক K এর সমানুপাতিক, পাতদ্বয়ের মধ্যবর্তী দূরত্ব d এর ব্যস্তানুপাতিক ।
সংযুক্ত ধারকগুলো একত্রে একটি ধারকের ন্যায় ক্রিয়া করে। ধারকের সংযোগ দু প্রকার; যথা -
ব্যাখ্যা : ধরা যাক, কোনো বর্তনীতে A, B, D, E ....... ইত্যাদি অনেকগুলো ধারক একত্রে ব্যবহার করা হলো। ধারকগুলোর দুই প্রান্তের তথা বর্তনীর যে দুই বিন্দুর সাথে এগুলোকে যুক্ত করা হয়েছে, সেই দুই বিন্দুর বিভব পার্থক্য এবং আধান হলো যথাক্রমে V এবং Q । একত্রে এই সকল ধারককে এক কথায় বলা হয়, ধারকের সংযোগ বা সমবায় । ধরা যাক, এই ধারকগুলোর ধারকত্ব যথাক্রমে C1, C2, C3, C4 ... ইত্যাদি। এখন যদি এতগুলো ধারক ব্যবহার না করে একটি মাত্র ধারক দ্বারা এগুলোকে এমনভাবে প্রতিস্থাপন করা হয় যাতে তার দুই প্রান্তের বিভব পার্থক্য V হয় এবং আধান Q বজায় থাকে, তবে এই একটি মাত্র ধারককে ঐ সংযোগ বা সমবায়ের তুল্য ধারক বলা হয় । আর এই প্রতিস্থাপিত ধারকের ধারকত্ব যদি C হয় তবে ঐ সংযোগের বা সমবায়ের তুল্য ধারকত্বই হবে C
কোনো তড়িৎ কোষ থেকে যদি + Q আধান প্রথম ধারকের প্রথম পাতে প্রদান করা হয় তাহলে তা অন্য পাতের ভেতরের পৃষ্ঠে - Q আধান আবিষ্ট হবে এবং + Q আধান দ্বিতীয় ধারকের
প্রথম পাতে প্রবাহিত হবে। এই প্রক্রিয়ার পুনরাবৃত্তি ঘটতে থাকে। সুতরাং প্রতিটি ধারকের এক পাত + Q এবং অন্যপাত - Q আধান লাভ করে। যদি ধারকগুলোর পাতদ্বয়ের মধ্যে বিভব পার্থক্য যথাক্রমে V1, V2, V3 ইত্যাদি হয়, তবে শ্রেণি সংযোগের প্রথম পাত এবং শেষ পাতের বিভব পার্থক্য হবে,
V = V₁ + V₂+ V3 ... (2.30)
যদি ধারকগুলোর ধারকত্ব যথাক্রমে C1, C2, C3 হয় তবে
V1=QC1,V2=QC2,V3=QC3.. (2.31)
এখন যদি ধারকের সংযোগের পরিবর্তে এমন একটি ধারক ব্যবহার করা হয় যার দুটি পাতের বিভব পার্থক্য V এবং তার আধান Q হয় তবে তার ধারকত্ব তথা সংযোগের তুল্য ধারকত্ব Cs, হবে,
Cs=QV
বা, V=QCs.. (2.32)
সুতরাং শ্রেণি সংযোগের তুল্য ধারকত্বের বিপরীত রাশি ধারকগুলোর ধারকত্বের বিপরীত রাশির সমষ্টির সমান ।
দেখা যায় যে, শ্রেণি সংযোগে তুল্য ধারকত্ব সংযোগের যে কোনো ধারকের ধারকত্বের চেয়ে ক্ষুদ্রতর।১ যখন কতগুলো বড় ধারক থেকে একটি ছোট ধারক তৈরির প্রয়োজন হয় তখন এরূপ সংযোগ ব্যবহার করা হয়।
২.১৮ চিত্রে তিনটি ধারকের সমান্তরাল সংযোগ দেখানো হলো, যেখানে ধনাত্মক পাতসমূহ কোষের ধনাত্মক প্রান্তে এবং ঋণাত্মক পাতগুলো কোষের ঋণাত্মক প্রান্তের সাথে সংযুক্ত করা হয়েছে।
তড়িৎকোষ থেকে + Q আধান প্রদান করা হলে, এ আধান ধারকগুলো তাদের ধারকত্ব অনুসারে ভাগ করে নেয়। যদি ধারকগুলোতে আধানের পরিমাণ যথাক্রমে Q1,Q2 ও Q3 হয় তবে মোট আধান হবে,
Q = Q1 + Q2 + Q3… (2.34)
যেহেতু প্রতিটি ধারকের দুটি পাত কোষের দুটি প্রান্তের সাথে যুক্ত, সুতরাং প্রতিটি ধারকের বিভব পার্থক্য একই হবে । ধরা যাক, এই বিভব পার্থক্য V। যদি ধারকগুলোর ধারকত্ব যথাক্রমে C1, C2, C3, হয়, তবে
Q1=C1 V, Q2=C2 V, এবং Q3=C3 V… (2.35)
এখন যদি ধারকের সংযোগের পরিবর্তে এমন একটি ধারক ব্যবহার করা হয় যার দুটি পাতের বিভব পার্থক্য V এবং যাতে আধান Q হয় তবে তার ধারকত্ব তথা সংযোগের তুল্য ধারকত্ব Cp হবে
Cp = QV
Q = Cp V
একটি আহিত ধারক প্রচুর পরিমাণে শক্তি তড়িৎ বিভব শক্তি হিসেবে সঞ্চয় করে। একটি আহিত ধারকের শক্তি হলো একে আহিত করতে প্রয়োজনীয় মোট কাজের পরিমাণ। আবার একে ক্ষরিত হতে দেয়া হলে ঐ শক্তি ফিরে পাওয়া যায়।
ধরা যাক, কোনো ধারকের ধারকত্ব C। আহিত করার সময় এর পাতে Q পরিমাণ আধান দেওয়ায় এর পাতদ্বয়ের বিভব পার্থক্য হলো V এবং আহিত করতে U পরিমাণ কাজ করতে হলো। সুতরাং ধারকটিতে সঞ্চিত শক্তির পরিমাণ U। এখন ধারকের পাতে ক্ষুদ্রাতিক্ষুদ্র আধান dQ প্রদান করতে যদি dU পরিমাণ কাজ হয় এবং এর ফলে ধারকটির শক্তি dU পরিমাণ বৃদ্ধি পেলে,
dU = VdQ
বা, dU=QCdQ
আহিত করার সময় ধারকটিতে Q = 0 থেকে Q = Q পরিমাণ আধান প্রদান করা হলে এর শক্তি U = 0 থেকে U = U তে উন্নীত হয়। সুতরাং উপরিউক্ত সমীকরণকে এ সীমার মধ্যে যোগজীকরণ করে মোট কাজের পরিমাণ পাওয়া যাবে।
একটি আহিত ধারকে সঞ্চিত শক্তি নির্ভর করে ধারকে সঞ্চিত আধান, ধারকের দুই পাতের বিভব পার্থক্য এবং ধারকের ধারকত্বের ওপর। একটি নির্দিষ্ট ধারকে সঞ্চিত শক্তি তার আধানের বর্গের সমানুপাতিক ।
নিম্ন বিভবে তড়িতাধান জমা করার জন্য ধারক ব্যবহৃত হয়। বেতার, টেলিগ্রাফ ও টেলিফোনে ধারক ব্যাপকভাবে ব্যবহৃত হয়। সাধারণত দু প্রকারের ধারক বেশি ব্যবহৃত হয়। স্থিরমান ধারক ও পরিবর্তনশীল ধারক।
এ প্রকার ধারকে অনেকগুলো টিনের পাত পর পর সাজানো থাকে। টিনের পাতগুলোর মাঝে অভ্রের পাত বা মোমে ডুবানো কাগজ বা সিরামিক বসানো থাকে। টিনের একটি অন্তর একটি পাত একত্রে সংযুক্ত থাকে যাতে প্রতিটি পাতের উভয় পৃষ্ঠই আলাদা পাত হিসেবে ব্যবহার করা যায়। এক সেট পাত P বিন্দুতে এবং অপর সেট পাত R বিন্দুতে সংযুক্ত থাকে [চিত্র ২.১৯]।
P ও R বিন্দুর একটি ভূ-সংযুক্ত থাকে। এর সাহায্যে অল্প জায়গার মধ্যে বিরাট ক্ষেত্রফলের দুটি চ্যাপ্টা পাতের একটি তুল্য ধারক পাওয়া যায়। এখানে অভ্র, সিরামিক বা মোমে ডুবানো কাগজ অন্তরক মাধ্যম হিসেবে কাজ করে। স্থায়িত্ব বৃদ্ধি এবং শক্তিক্ষয় হ্রাস করার জন্য অন্তরক হিসেবে আজকাল কাগজের পরিবর্তে পাতলা পলিস্টারিনের স্তর ব্যবহার করা হয়। বর্তমানে অবশ্য ইলেকট্রোলাইটিক ধারকের ব্যবহার বেশ বাড়ছে।
দুই সেট ধাতব পাত দ্বারা পরিবর্তনশীল ধারক তৈরি করা হয়। এর এক সেট স্থির থাকে। অপর সেট একটি দণ্ডের সাথে আটকানো থাকে। দণ্ডটি ঘুরালে এই সেটটি স্থির সেটের ফাঁকে ঘুরতে পারে [চিত্র ২.২১]। এক্ষেত্রে ডাইইলেকট্রিক মাধ্যম হচ্ছে বায়ু। দণ্ডটি ঘুরালে পাতগুলোর কার্যকর ক্ষেত্রফলের পরিবর্তন হয়। সুতরাং ধারকত্বের পরিবর্তন হয়। বেতার যন্ত্রের টিউনিং-এর কাজে এটি ব্যবহৃত হয়।
দৈনন্দিন জীবনে নানা প্রকার বৈদ্যুতিক ও ইলেকট্রোনিক যন্ত্রপাতিতে ধারক ব্যবহৃত হয়। রেডিও, টিভি, ফোন, ফ্যান, টিউবলাইট প্রভৃতিতে আমরা ধারকের ব্যাপক ব্যবহার দেখতে পাই।(খ) পরিবর্তনশীল ধারক : দুই সেট ধাতব পাত দ্বারা পরিবর্তনশীল ধারক তৈরি করা হয়। এর এক সেট স্থির থাকে। অপর সেট একটি দণ্ডের সাথে আটকানো থাকে। দণ্ডটি ঘুরালে এই সেটটি স্থির সেটের ফাঁকে ঘুরতে পারে [চিত্র ২.২১]। এক্ষেত্রে ডাইইলেকট্রিক মাধ্যম হচ্ছে বায়ু। দণ্ডটি ঘুরালে পাতগুলোর কার্যকর ক্ষেত্রফলের পরিবর্তন হয়। সুতরাং ধারকত্বের পরিবর্তন হয়। বেতার যন্ত্রের টিউনিং-এর কাজে এটি ব্যবহৃত হয়।
আমরা জানি, এক শ্রেণির পদার্থ আছে, তড়িৎ ক্ষেত্রের প্রভাবে যাদের মধ্য দিয়ে আধান মুক্তভাবে চলাচল করতে পারে । এদেরকে বলা হয় পরিবাহী। ধাতব পদার্থসমূহ এ শ্রেণির অন্তর্গত। আরেক শ্রেণির পদার্থ আছে যাদের বলা হয় অপরিবাহী বা অন্তরক বা ডাইইলেকট্রিক বা পরাবৈদ্যুতিক মাধ্যম, যাদের মধ্য দিয়ে আধান চলাচল করতে পারে না । রাবার, অ্যাম্বার, কাচ ইত্যাদি এদের মধ্যে পড়ে।
আমরা জানি, কোনো পরিবাহীর বা একাধিক পরিবাহীর সমন্বয়ে গঠিত কোনো সমাবেশের বিভব বৃদ্ধি করলে এটি আধান ধরে রাখতে পারে। এই পরিবাহী বা সমাবেশকে বলা হয় ধারক। দেখা গেছে যে, একটি সমান্তরাল পাত ধারকের দুই পাতের মাঝখানে কোনো ডাইইলেকট্রিক রাখলে ধারকের ধারকত্ব বৃদ্ধি পায়। এখন স্বাভাবিকভাবেই প্রশ্ন জাগে ডাইইলেকট্রিকের মধ্যে এমন কী আছে যা ধারকের ধারকত্ব বাড়িয়ে দেয়? ডাইইলেকট্রিকের উপস্থিতিতে ধারকত্ব বৃদ্ধির অর্থ হচ্ছে একই আধানের জন্য ভোল্টেজ তথা বিভব পার্থক্য কমে যাওয়া। যেহেতু বিভব পার্থক্য হচ্ছে ধারকের তড়িৎ ক্ষেত্রের যোগজ, কাজেই আমরা বলতে পারি ধারকের পাতের আধান একই থাকলেও ধারকের অভ্যন্তরে তথা দুই পাতের মাঝে তড়িৎ ক্ষেত্র হ্রাস পায়।
আবার ধারকের দুই পাতের মাঝখানে পরিবাহী মাধ্যম থাকলেও তড়িৎ ক্ষেত্র হ্রাস পায়, কেননা ধারকের পাতের মুখোমুখি পরিবাহীর দুই পৃষ্ঠে আবিষ্ট আধানের উদ্ভব হয়। কিন্তু সমপরিমাণ ডাইইলেইট্রিকের জন্য তড়িৎ ক্ষেত্রের হ্রাস অনেক বেশি হয়, কেননা ডাইইলেকট্রিক মাধ্যমে কোনো মুক্ত আধান থাকে না। আর যদি দুই পাতের মধ্যবর্তী স্থান ডাইইলেকট্রিক দিয়ে সম্পূর্ণরূপে পূর্ণ করা হয়, তাহলে তড়িৎ প্রাবল্য শূন্য হয়। এর থেকে এ সিদ্ধান্তে উপনীত হওয়া যায় যে, তড়িৎ ক্ষেত্রের প্রভাবে ডাইইলেকট্রিকের অভ্যন্তরে আধানের সামান্য সরণ হয় ফলে ডাইইলেকট্রিকের দুই পৃষ্ঠে আবিষ্ট আধানের উদ্ভব ঘটে।
K=CC0=ডাইইলেকট্রিক পূর্ণ ধারকের ধারকত্ব/ডাইইলেকট্রিক শূন্য ধারকের ধারকত্ব
খ্রিস্টের জন্মের ছয়শ বছর পূর্বে গ্রিক দার্শনিক থেলিস্ সর্বপ্রথম পর্যবেক্ষণ করেন যে, সোলেমানী পাথর বা অ্যাম্বারকে (পাইন গাছের শক্ত আঠা) রেশমি কাপড় দিয়ে ঘষলে এগুলো ছোট ছোট কাগজের টুকরোকে আকর্ষণ করতে পারে। অ্যাম্বার (amber)-এর গ্রিক নাম ইলেকট্রন (electron) থেকে ইলেকট্রিসিটি (electricity) বা তড়িৎ বা বিদ্যুৎ শব্দের উত্তৰ হয়েছে।
নিজে কর টেবিলের উপর কতগুলো ছোট ছোট কাগজের টুকরা রাখো। এবার একটি প্লাস্টিকের চিরুনির সাহায্যে কয়েকবার চুল আঁচড়ে চিরুনিটিকে কাগজের টুকরাগুলোর নিকটে ধরো |
---|
চিরুনিটি কাগজের টুকরোগুলোকে আকর্ষণ করে । চিরুনিটিকে যদি মাথার চুলের সাথে ঘষা না হয় তাহলে কিন্তু কাগজের টুকরোগুলো আকৃষ্ট হবে না। কতগুলো বস্তুকে অন্য কিছু বস্তু দ্বারা ঘষা হলে সেই বস্তু অন্য হালকা বস্তুকে আকর্ষণ করার ক্ষমতা লাভ করে ।
ঘর্ষণের ফলে প্রত্যেক বস্তুই অন্য বস্তুকে আকর্ষণের কম-বেশি ক্ষমতা অর্জন করে। এ ঘটনাকে তড়িতাহিতকরণ বলে। ঘর্ষণের ফলে যে সব বস্তু অন্য বস্তুকে আকর্ষণের ক্ষমতা অর্জন করে তাদেরকে তড়িতাহিত বস্তু বলে।
ঘর্ষণের ফলে এক বস্তু থেকে অপর বস্তুতে ইলেকট্রন স্থানান্তরিত হয়। ইলেকট্রনের একটি মৌলিক ও বৈশিষ্ট্যমূলক
ধর্ম হচ্ছে আধান বা চার্জ (charge) । ঘর্ষণে তাই বস্তু আধানগ্রস্ত বা আহিত হয় ।
স্থির বা গতিশীল আধানের প্রকৃতি ও প্রভাব বা ক্রিয়াকে তড়িৎ বলে ।
আমরা জানি, প্রত্যেক পদার্থ অতি ক্ষুদ্র ক্ষুদ্র কণা দ্বারা গঠিত। এদেরকে পরমাণু বলে। প্রত্যেক পদার্থের পরমাণু আবার নিউক্লিয়াসের চারদিকে ঘূর্ণায়মান ইলেকট্রন দ্বারা গঠিত। নিউক্লিয়াসে দু রকমের কণা থাকে- প্রোটন ও নিউট্রন । পদার্থ সৃষ্টিকারী এ সব মৌলিক কণাসমূহের (ইলেকট্রন, প্রোটন ও নিউট্রনের) মৌলিক ও বৈশিষ্ট্যমূলক ধর্মকেই আধান বা চার্জ বলে। প্রোটন ধনাত্মক আধানযুক্ত ও নিউট্রনে কোনো আধান নেই। নিউক্লিয়াসের চারদিকে অবিরত ঘূর্ণায়মান কণা ইলেকট্রন ঋণাত্মক আধানসম্পন্ন। একটি প্রোটনের আধানের পরিমাণ ইলেকট্রনের আধানের সমান। স্বাভাবিক অবস্থায় পরমাণুতে সমান সংখ্যক ইলেকট্রন ও প্রোটন থাকে। ফলে একটি গোটা পরমাণুতে কোনো তড়িৎ ধর্ম প্রকাশ পায় না। বিভিন্ন পদার্থের পরমাণুতে ইলেকট্রন ও প্রোটনের সংখ্যা বিভিন্ন। হাইড্রোজেন পরমাণুতে একটি প্রোটন ও একটি ইলেকট্রন আছে, কোনো নিউট্রন নেই। হিলিয়াম পরমাণুর নিউক্লিয়াসে দুটি প্রোটন ও দুটি নিউট্রন থাকে এবং বাইরে থাকে দুটি ইলেকট্রন। নিউক্লিয়াস খুব ভারী বলে পরমাণু থেকে বিচ্ছিন্ন হতে পারে না। পক্ষান্তরে ইলেকট্রনগুলো অপেক্ষাকৃত হাল্কা বলে এরা সহজে চলাফেরা করতে পারে এবং পরমাণু থেকে বিচ্ছিন্ন হয়ে যেতে পারে।
কোনো পরমাণুতে যতক্ষণ পর্যন্ত ইলেকট্রন ও প্রোটনের সংখ্যা সমান থাকে ততক্ষণ পর্যন্ত তা নিস্তড়িত বা তড়িৎ নিরপেক্ষ। কিন্তু পরমাণুতে এদের সংখ্যা সমান না হলে পরমাণু তড়িৎগ্রস্ত হয় অর্থাৎ বস্তুটি তড়িতাহিত হয় । বাহ্যিক বল প্রয়োগ, তাপ প্রয়োগ, রাসায়নিক প্রক্রিয়া ইত্যাদি পদ্ধতি দ্বারা কোনো পরমাণু থেকে মুক্ত ইলেকট্রনকে বের করে আনা যায়। প্রোটন খুব ভারী হওয়ায় এবং নিউক্লীয় বলের প্রভাবে নিউক্লিয়াসে আবদ্ধ থাকায় একে সহজে বিচ্ছিন্ন করা যায় না। কোনো পরমাণুতে ইলেকট্রনের সংখ্যা কমে গেলে প্রোটনের আধিক্য দেখা যায়। এ অবস্থাকে বলা হয় ধনাত্মক তড়িতাহিত হওয়া। আবার এ বিচ্ছিন্ন ইলেকট্রন অপর কোনো পরমাণুর সাথে যুক্ত হলে সেই পরমাণুতে ইলেকট্রনের সংখ্যা বেড়ে যায়, ফলে ঋণাত্মক তড়িতাহিত হয়। পরমাণুতে ইলেকট্রনের সংখ্যা স্বাভাবিকের চেয়ে কম বা বেশি হলে তাকে তড়িতাহিত হওয়া বলে ।
স্বাভাবিক অবস্থায় পদার্থের পরমাণুতে ইলেকট্রন ও প্রোটন সমান সংখ্যক থাকে। তবে প্রত্যেক পরমাণুরই প্রয়োজনের অতিরিক্ত ইলেকট্রনের প্রতি আসক্তি থাকে। ইলেকট্রনের প্রতি এ আসক্তি বিভিন্ন বস্তুতে বিভিন্ন রকম। তাই দুটি বস্তুকে যখন পরস্পরের সংস্পর্শে আনা হয় তখন যে বস্তুর ইলেকট্রন আসক্তি বেশি সে বস্তু অপর বস্তুটি থেকে মুক্ত ইলেকট্রন সংগ্রহ করে ঋণাত্মক আধানে আহিত হয়। একটি কাচদণ্ডকে রেশমে ঘষলে এরকম ঘটনা ঘটে। রেশমের ইলেকট্রন আসক্তি কাচের চেয়ে বেশি বলে এদের যখন পরস্পরের সাথে ঘষা হয়, তখন কাচ থেকে ইলেকট্রন রেশমে চলে যায়, ফলে রেশম ঋণাত্মক আধানে এবং কাচদণ্ড ধনাত্মক আধানে আহিত হয়।
আবার ফ্লানেলের সাথে ইবোনাইট দণ্ড ঘষলে, ইবোনাইট দণ্ড ঋণাত্মক আধানে এবং ফ্লানেল ধনাত্মক আধানে আহিত হয়। কারণ, ইবোনাইটের ইলেকট্রন আসক্তি ফ্লানেলের চেয়ে বেশি বলে, পরস্পরের সাথে ঘর্ষণের ফলে ফ্লানেল থেকে ইলেট্রন ইবোনাইট দণ্ডে চলে আসে।
কাচ বা ইবোনাইট দণ্ডে যে ভিন্ন প্রকৃতির তড়িতের উদ্ভব হচ্ছে তা কাচ বা ইবোনাইটের কোনো বিশেষ ধর্মের জন্য নয়। কাচকে যে কোনো বস্তু দিয়ে ঘষলেই যে ধনাত্মক আধানের সঞ্চার হবে তাও ঠিক নয়, আবার ইবোনাইটকে যে কোনো বস্তু দিয়ে ঘষলেই ঋণাত্মক আধানের সঞ্চার হয় না। যেমন কাচকে রেশম দিয়ে ঘষলে কাচে ধনাত্মক আধানের আর পশম দিয়ে ঘষলে কাচে ঋণাত্মক আধানের উদ্ভব ঘটে। ঘর্ষণের ফলে কোন্ ধরনের আধানের সঞ্চার হবে তা নির্ভর করে যে বস্তুদ্বয়ের মধ্যে ঘর্ষণ হচ্ছে তাদের প্রকৃতির ওপর। দুটি বন্ধু পরস্পরের সাথে ঘষলে একটিতে ধনাত্মক এবং অপরটিতে ঋণাত্মক আধানের সঞ্চার হয়।
অনেক পরীক্ষা-নিরীক্ষার মাধ্যমে জানা গেছে যে, প্রকৃতিতে কোনো বস্তুর সর্বমোট আধান একটি নির্দিষ্ট ন্যূনতম মানের পূর্ণ সংখ্যক গুণিতক। ইলেক্ট্রনের আধান হচ্ছে এ নির্দিষ্ট ন্যূনতম মান। ইলেকট্রনের আধান e হলে কোনো বস্তুর মোট আধান, q = ne
এখানে n হচ্ছে ধনাত্মক বা ঋণাত্মক পূর্ণসংখ্যা। সুতরাং দেখা যায় যে, কোনো বন্ধুতে যে কোনো মানের আধান থাকতে পারে না। কোনো বস্তুতে মোট আধানের পরিমাণ ইলেকট্রনের আধান e =1.6 x 10-19 C এর পূর্ণসংখ্যক গুণিতক হবেই। শুনো বস্তুতে আধানের মান নিরবচ্ছিন্ন হতে পারে না, আধান বিচ্ছিন্ন মানের অর্থাৎ ইলেকট্রনের আধানের গুণিতক হবেই, একে আধানের কোয়ান্টায়ন বলে । সুতরাং দেখা যায় যে, এমন কোনো কণা বা বস্তু পাওয়া সম্ভব, যার আধান 15e বা 7e, কিন্তু 4.65e আধানের কোনো বস্তু পাওয়া সম্ভব নয়।
জগতে মোট আধানের পরিমাণ সর্বদা একই থাকে। অর্থাৎ আধান সৃষ্টি করা যায় না বা ধ্বংসও হয় না। কোনো ভৌত প্রক্রিয়ায় আধান এক বস্তু থেকে অন্য বস্তুতে স্থানান্তরিত হতে পারে কিন্তু কোনো নতুন আধান যেমন সৃষ্টি হয় না। তেমনি কোনো আধান ধ্বংসও হয় না। কাচদণ্ড ও রেশমি কাপড়ের ঘর্ষণ পরীক্ষায় দেখা গেছে যে, কাচদণ্ড থেকে যে পরিমাণ ঋণাত্মক আধান রেশমি কাপড়ে চলে যায় কাচদণ্ডের ঋণাত্মক আধান সেই পরিমাণ হ্রাস পায় অর্থাৎ কাচদণ্ডে সেই পরিমাণ ধনাত্মক আধানের উদ্ভব হয়। কাচদণ্ড থেকে রেশমি কাপড়ে যে পরিমাণ ঋণাত্মক আধান স্থানান্তরিত হয় রেশমি কাপড়েও ঠিক সেই পরিমাণ ঋণাত্মক আধানের উদ্ভব হয়। অর্থাৎ ঘর্ষণের ফলে কোনো নতুন আধানের সৃষ্টি হয় না বরং এক বস্তু থেকে অন্য বস্তুতে আধানের স্থানান্তর ঘটে।
আধান আহিত বস্তুর বাইরের পৃষ্ঠে অবস্থান করে। একটি আহিত বস্তু যখন খুব ছোট হয় অর্থাৎ বস্তুটি যদি খুব ছোট বিন্দুর ন্যায় হয় সেই বস্তুর আধানকে বিন্দু আধান বলে। তড়িৎগ্রস্ত বস্তুগুলোর মধ্যকার দূরত্বের তুলনায় তাদের আকার যদি খুব ছোট হয় তখন তাদেরকে বিন্দু আধান বিবেচনা করা যায়। কোনো বস্তুর আধানকে বিন্দু আধান বিবেচনা করলে আধান সংক্রান্ত হিসাব নিকাশ সহজে করা যায়।
করে। আহিত বস্তুর আশেপাশে যে অঞ্চল জুড়ে এই প্রভাব বিদ্যমান থাকে সেই অঞ্চলই এই আহিত বস্তুর তড়িৎ ক্ষেত্র।
তাত্ত্বিকভাবে একটি আহিত বস্তুর তড়িৎক্ষের অসীম পর্যন্ত বিস্তৃত।
একটি আহিত স্থির বস্তুর তড়িৎ ক্ষেত্রের মধ্যে অন্য একটি আহিত বস্তু আনলে সেটি একটি বল লাভ করে। এই বলকে বলা হয় তড়িৎ বল। ধরা যাক, ক্ষেত্র সৃষ্টিকারী আধানটি একটি ধনাত্মক আধান। এখন যদি তার তড়িৎক্ষেত্রের মধ্যে আরেকটি ধনাত্মক আধান আনা হয়, তাহলে সেটি একটি বিকর্ষণ বল লাভ করবে, আর আনীত আধানটি যদি ঋণাত্মক হয় তাহলে সেটি আকর্ষণ বল লাভ করবে। বিপরীতক্রমে ক্ষেত্র সৃষ্টিকারী আধানটি যদি ঋণাত্মক হয়, তাহলে তার তড়িৎ ক্ষেত্রের মধ্যে একটি ধনাত্মক আধান আকর্ষণ বল এবং একটি ঋণাত্মক আধান বিকর্ষণ বল লাভ করে। দুই ধরনের আধানের এই বল সম্পর্কে নিম্নোক্ত নিয়মটি খাটে,
দুটি আধানের মধ্যবর্তী এ আকর্ষণ বা বিকর্ষণ বলের মান নির্ভর করে,
গাউসের সূত্র পদার্থবিজ্ঞানের অতি গুরুত্বপূর্ণ একটি সূত্র। এটি স্থির তড়িতের একটি মৌলিক সূত্র। ম্যাক্সওয়েল যে চারটি সূত্রের সাহায্যে তার তড়িৎ চৌম্বক তত্ত্ব বর্ণনা করেন, তার মধ্যে গাউসের সূত্রটি হচ্ছে প্রথম সূত্র। গাউসের সূত্র থেকে আমরা কুলম্বের সূত্রে উপনীত হতে পারি। গাউসের সূত্রে তড়িৎ ফ্লাক্স নামক রাশিটি একটি মুখ্য ভূমিকা পালন করে । তাই আমরা গাউসের সূত্র বিবৃত করার আগে তড়িৎ ফ্লাক্স সম্পর্কে কিছুটা ধারণা গ্রহণ করবো।
তড়িৎ ক্ষেত্রের মধ্যে কোনো তল কল্পনা করলে তার সাথে তড়িৎ ফ্লাক্স সংশ্লিষ্ট থাকে বা ঐ তল দিয়ে তড়িৎ ফ্লাক্স অতিক্রম করে বা প্রবাহিত হয়। কোনো তলের ক্ষেত্রফলের সাথে ঐ তলের লম্ব বরাবর তড়িৎ ক্ষেত্রের তথা তড়িৎ ক্ষেত্রের প্রাবল্যের উপাংশ গুণ করলে তড়িৎ ফ্লাক্স পাওয়া যায়।
কোনো তলের ক্ষেত্রফল S এবং ঐ তলের লম্ব বরাবর তড়িৎ ক্ষেত্র E হলে [চিত্র ২.২২ক] তড়িৎ ফ্লাক্স
φ=ES
কিন্তু যদি তড়িৎ ক্ষেত্র তলের লম্ব বরাবর ক্রিয়া না করে লম্বের সাথে θ কোণে ক্রিয়া করে (চিত্র ২.২২খ] তাহলে ঐ তলের লম্ব বরাবর তড়িৎ ক্ষেত্রের উপাংশ হবে E cos θ। সুতরাং তড়িৎ ফ্লাক্স হবে
φ=EScosθ .. (2.39)
এখন →S কে একটি ভেক্টর হিসেবে গণ্য করা হয় যার মান S ঐ তলের ক্ষেত্রফল নির্দেশ করে এবং দিক হয় ঐ তলের লম্ব বরাবর বহির্মুখী ।
সুতরাং উপরিউক্ত সমীকরণের θ হলো ক্ষেত্রফল ভেক্টর →S এবং তড়িৎ ক্ষেত্র →E এর অন্তর্ভুক্ত কোণ। অতএব, এই সমীকরণ দাঁড়ায়,
φ=→E.→S
সুতরাং ক্ষেত্রফল ভেক্টর ও তড়িৎ ক্ষেত্র এর স্কেলার গুণফল দ্বারা তড়িৎ ফ্লাক্স পরিমাপ করা হয়।
কোনো তড়িৎ ক্ষেত্র →E তে একটি অতি ক্ষুদ্র তল →dS বিবেচনা করা যাক (চিত্র ২.২৩)। তাহলে ঐ তলের সাথে সংশ্লিষ্ট তড়িৎ ফ্লাক্স হবে,
dφ=→E.→dS.. (2.41)
সমগ্র ক্ষেত্রফলব্যাপী তড়িৎ ফ্লাক্স হবে,
φ=∫s→E.→dS .. (2.42)
এই ক্ষেত্রফল তথা তলের ভেক্টর সর্বদা তলের সাথে লম্ব বরাবর। কোনো বদ্ধ তলের জন্য ঐ ক্ষেত্রের ফ্লাক্স হবে,
φ=∮s→E.→dS.. (2.43)
এই তল যোগজ নির্দেশ করে যে সমগ্র তলকে অসংখ্য ক্ষুদ্রাতিক্ষুদ্র সমতল →dS এ বিভক্ত করে প্রতিটি তল উপাদানের জন্য →E. →dS স্কেলার রাশিটির হিসাব করতে হবে। এসব মানের সমষ্টিই হচ্ছে সমগ্র তলের মোট তড়িৎ ফ্লাক্স ।
রাশি ও একক : উপরিউক্ত (2.40) সমীকরণ বা অন্যান্য সমীকরণ থেকে দেখা যায়, তড়িৎ ফ্লাক্স একটি স্কেলার রাশি। আরো দেখা যায় যে, এর একক হচ্ছে NC-1 m2 ।
প্রখ্যাত গণিতবিদ কার্ল এফ গাউস এই সূত্র প্রদান করেন।
যদি কোনো বন্ধ তলের ক্ষেত্রফল S এবং ঐ তল কর্তৃক আবদ্ধ মোট আধান q হয়, তাহলে গাউসের সূত্রানুসারে,
∈0φ=q.. (2.44)
বা, ∈0∮s→E.→dS=q.. (2.45)
এখানে ∈0 হচ্ছে শূন্যস্থানের ভেদনযোগ্যতা।
স্পষ্টত: যদি ঐ তলে (গাউসীয় তল) কোনো আধান আবদ্ধ না থাকে বা তাতে সমপরিমাণ ধনাত্মক ও ঋণাত্মক আধান থাকে অর্থাৎ q = 0 হয় তাহলে,
∮s→E.→dS =0
(2.45) সমীকরণ থেকে আমরা গাউসের সূত্রকে এভাবেও বিবৃত করতে পারি
আমরা জানি, কুলম্বের সূত্র দুটি বিন্দু আধানের মধ্যকার বলের জন্য প্রযোজ্য হয়। ধরা যাক, A বিন্দুতে [চিত্র ২.২৪] একটি বিচ্ছিন্ন বিন্দু আধান q অবস্থিত। এই আধান তার চারপাশে একটি তড়িৎ ক্ষেত্র সৃষ্টি করে। এই তড়িৎ ক্ষেত্রে q থেকে দূরত্বে B বিন্দুতে একটি একক ধনাত্মক আধান স্থাপন করলে সেটি কুলম্বের সূত্র [সমীকরণ: 2.21 অনুসারে যে বল লাভ করে, তাই হচ্ছে ঐ বিন্দুর তড়িৎ প্রাবল্য E।
:-E=14π∈nqr2
এর দিক হবে AB রেখা বরাবর B বিন্দু থেকে বহির্মুখী। এখন q কে কেন্দ্র করে r ব্যাসার্ধের একটি গোলক কল্পনা করা যাক। সুতরাং এই গোলকের পৃষ্ঠে সর্বত্র তড়িৎ ক্ষেত্র →E এর তথা তড়িৎ প্রাবল্যের মান সমান হবে। গোলকের পৃষ্ঠের প্রতিটি বিন্দুতে →E এর দিক হবে ঐ বিন্দুতে অভিলম্ব বরাবর তথা ব্যাসার্ধ বরাবর বহির্মুখী।
এখন B বিন্দুতে গোলকের অতি ক্ষুদ্র একটি তল d→S বিবেচনা করা যাক। d→Sএর মান হচ্ছে ঐ তলের ক্ষেত্রফল এবং দিক হচ্ছে ঐ তলের লম্ব বরাবর বহির্মুখী অর্থাৎ →E বরাবর। সুতরাং গোলকের পৃষ্ঠের প্রতিটি বিন্দুতে →E এবং d→S এর দিক একই অর্থাৎ →E এবং d→S এর মধ্যবর্তী কোণ θ = 0° । এই d→S তলের সাথে সংশ্লিষ্ট তড়িৎ ফ্লাক্স হবে,
φ=→E . d→S
এই তল যোগজ নির্দেশ করে সমগ্র তলকে অসংখ্য ক্ষুদ্রাতিক্ষুদ্র সমতল 'd→S এ বিভক্ত করে প্রতিটি তল উপাদানের জন্য →E . ’d→S স্কেলার রাশিটির হিসাব করতে হবে। এসব মানের সমষ্টিই হচ্ছে সমগ্র তলের মোট তড়িৎ ফ্লাক্স ।
একটি বিচ্ছিন্ন বিন্দু আধান q বিবেচনা করা যাক। q কে কেন্দ্র করে r ব্যাসার্ধের একটি গোলক কল্পনা করা যাক, যার পৃষ্ঠ গাউসীয় তল হিসেবে গণ্য হবে। প্রতিসাম্য থেকে এটি সহজেই বোঝা যায় যে, এই গোলকের পৃষ্ঠে সর্বত্র তড়িৎ ক্ষেত্র →E এর তথা তড়িৎ প্রাবল্যের মান সমান হবে। গোলকের পৃষ্ঠের প্রতিটি বিন্দুতে →E এর দিক হবে ঐ বিন্দুতে অভিলম্ব বরাবর তথা ব্যাসার্ধ বরাবর বহির্মুখী (চিত্র ২.২২)।
গাউসের সূত্র প্রয়োগ করে আমরা পাই,
∈0∮s→E.d→S=q.. (2.46)
যেহেতু →E এবং d→S এর অভিমুখ একই, তাদের অন্তর্ভুক্ত কোণ 0°
:- ∮s→E.d→S=∮sEds cos0°=E∮sds=E×4πr2
সুতরাং (2.46) সমীকরণ দাঁড়ায়,
∈0E 4πr2=qE=14π∈0qr2.. (2.47)
মনে করি, যে বিন্দুতে E হিসাব করা হয়েছে, সেই বিন্দুতে একটি আধান qo স্থাপন করা হলো। তাহলে qo এর ওপর প্রযুক্ত বলের মান
F=qοEF=14π∈0qqοr2
অর্থাৎ নির্দিষ্ট মাধ্যমে দুটি বিন্দু আধানের মধ্যকার ক্রিয়াশীল বলের মান আধানদ্বয়ের গুণফলের সমানুপাতিক এবং তাদের মধ্যকার দূরত্বের বর্গের ব্যস্তানুপাতিক। আর এটিই হচ্ছে দুটি বিন্দু আধানের মধ্যকার কুলম্বের সূত্র।
সুতরাং বলা যেতে পারে, গাউসের সূত্রের একটি বিশেষ রূপ হচ্ছে কুলম্বের সূত্র। অন্য কথায়, কুলম্বের সূত্রের সাধারণীকৃত রূপ হচ্ছে গাউসের সূত্র।
দুটি বিন্দু আধানের মধ্যকার আকর্ষণ বিকর্ষণ বল সংক্রান্ত সূত্রটি হচ্ছে কুলম্বের সূত্র। সুতরাং কুলম্বের সূত্রের বল, প্রাবল্য, বিভব ইত্যাদি হিসাব করতে হলে তড়িৎ ক্ষেত্র সৃষ্টিকারী আধানটি বিন্দু আধান হতে হবে। একটি বিস্তৃত আহিত বস্তুর বা আধানের কোনো বণ্টনের ক্ষেত্রে কুলম্বের সূত্র ব্যবহার করা অসুবিধাজনক। আধানের বণ্টন যদি সুষম না হয়, তাহলে স্থির তড়িৎ সংক্রান্ত হিসাব নিকাশ খুবই কষ্ট ও সময়সাধ্য হয়ে ওঠে। অপরদিকে গাউসের সূত্র আধানের যে কোনো বণ্টনের বা আহিত বস্তুর যে কোনো আকৃতির ক্ষেত্রে সহজেই ব্যবহার করে ঈন্সিত হিসাব নিকাশ করা যায়।
Read more
আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago